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Abstract:  International marketers may be interested in stock market linkages for various 
reasons: the co-movements of equity prices appear to reflect not only market globalization but also the 
globalization of capital resources. The co-movements can affect the balancing strategies of country 
market portfolios as they indicate opportunities and risks. The strategic choice of alternative market 
presence, such as market entry via export marketing or a full ownership and marketing may need to 
match with the type of financial resources. The co-movements of and the linkages between the U.S. 
stock market and Asian stock markets have been studied extensively. However, little attention has been 
given to the co-movements of Asian stock markets and the lead/lag linkages between them. In this 
paper, we study this issue with the principal components analysis (PCA) and Granger-causality (G-C) 
statistical techniques. We find that the contemporaneous co-movements of Asian stock markets have 
become closer and portfolio diversification benefits with Asian stock markets have diminished over time 
during the January 1, 2001-January 1, 2011 period. We find that the Singapore, Indian, and Japanese 
stock markets are the most influential stock markets and the Philippine and South Korean stock 
markets are the least influential stock markets in Asia. The Japanese, Singapore, and New Zealand 
stock markets are the least affected stock markets and the Shanghai, Australian, and South Korean 
stock markets are the most affected stock markets by the movements in the other Asian stock markets. 

Keywords: Asian stock markets, Co-movements of stock markets, Linkages between stock markets, 
Principal components analysis, Granger causality  

JEL Classification: G11, G15 

1. Introduction 

 In this paper, we study the contemporaneous co-movements of Asian stock markets 
and the time series lead/lag linkages between them with the principal components analysis 
(PCA) and Granger causality (G-C) statistical techniques with a sample of thirteen major Asian 
stock markets during the January 1, 2001-January 1, 2011 period. 

 Studying the contemporaneous co-movements of national stock markets has long been 
a popular research topic in finance (see: Meric and Meric, 2011). Makridakis and 
Wheelwright (1974), Philippatos, Christofi, and Christofi (1983), and Meric and Meric (1989) 
have made the use of the PCA multivariate technique popular in studying the co-movements 
of national stock markets. The technique has since been used in many studies (see, eg., Lee 
and Kim, 1993; Lau and McInnish, 1993; Meric and Meric, 1996, 1997, 2001a,b). In this paper, 
we use the PCA techniques to study the contemporaneous co-movement patterns of Asian 
stock markets with daily index returns data for the January 1, 2001-January 1, 2011 period. 
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We divide the 10-year period into two 5-year sub-periods and we apply PCA to each period to 
determine if there are significant changes in the co-movement patterns of Asian stock 
markets over time. 

 In empirical studies, the G-C technique is often used to determine if the past index 
returns of a national stock market can be used to predict the future index returns of other 
national stock markets (see, e.g., Ratner and Leal, 1996; Meric et al., 2002; Meric and Meric, 
2011).  In this paper, we use the G-C technique to study the lead/lag linkages between Asian 
stock markets with daily stock market index data for the January 1, 2001-January 1, 2011 
period. We determine the most influential and the least influential stock markets in Asia. We 
investigate which Asian stock markets are leading the others and which Asian stock markets 
tend to follow the others. We determine the Asian stock markets that are most affected and 
those that are least affected by the movements of the other Asian stock markets.  

 The paper is organized as follows. In the next section, we explain our data and 
methodology. We present our PCA results in Section III. We present our G-C analysis results in 
Section IV. We summarize our findings and present our conclusions in Section V. We describe 
the PCA and G-C statistical techniques in Appendixes A and B, respectively.    

 2. Data and Methodology 

 The study covers the following thirteen Asian stock markets: Australia, Hong Kong, 
India, Indonesia, Japan, Malaysia, New Zealand, the Philippines, Singapore, Shanghai, South 
Korea, Taiwan, and Thailand. The daily stock market indexes for these stock markets were 
downloaded from the DataStream database. The Morgan Stanley Capital International (MSCI) 
data are used for the Indonesian and South Korean stock markets. The DataStream data are 
used for the other stock markets. The daily stock returns were computed as the log 
difference in the indexes (Ln(It/It-1)).   

 The principal component analysis (PCA) is a widely used multivariate statistical 
technique to study the contemporaneous co-movements of global equity markets. The PCA 
technique can combine global stock markets into distinct principal component clusters in 
terms of the similarities of their contemporaneous co-movements. Stock markets with 
correlated, close co-movement patterns are not good portfolio diversification prospects. We 
determine which Asian stock markets were good portfolio diversification prospects for 
investors during the January 1, 2001-January 1, 2011 period. We use the PCA technique to 
study the contemporaneous co-movement patterns of the Asian stock markets. A brief 
description of the PCA techniques is presented in Appendix A. A detailed discussion of the 
technique can be found in Mardia, Kent, and Bibby (1979) and Marascuilo and Levin (1983).  

 An independent variable X Granger-causes a change in dependent variable Y, if Y can 
be better forecasted with past values of both X and Y than just with past values of Y alone 
(see: Granger, 1969, 1988). The causality in the Granger sense does not imply a cause and 
effect relationship, but one of predictability. In empirical studies, the Granger-causality (G-C) 
technique is often used to determine if the index returns of a national stock market can 
predict the future index returns of other national stock markets (see, e.g., Ratner and Leal, 
1996; Meric et al., 2002). A brief description of the G-C technique is presented in Appendix B. 
In this paper, we use the G-C technique to study if the past daily index returns of the thirteen 
Asian stock markets covered in the study could be used to predict each other's future daily 
index returns during the January 1, 2001-January 1, 2011 period. We investigate which Asian 
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stock markets are leading the other Asian stock markets and which Asian stock markets are 
affected the most by the movements in the other Asian stock markets. Stock markets with 
significant lead/lag linkages are not good portfolio diversification prospects for investors.  

  3. Principal Components Analysis 

 To determine the clusters of stock markets with similar contemporaneous movement 
patterns, the correlation matrix of the thirteen Asian stock markets was used as input in the 
SPSS-PCA program.  The Varimax rotation was used to maximize the factor loadings of the 
stock markets in each principal component with similar movement patterns.  Using Kaiser's 
significance rule, statistically significant principal components with eigenvalues greater than 
unity were retained for analysis (see: Mardia et al., 1979, Marascuilo and Levin, 1983). The 
January 1, 2001-January 1, 2011 ten-year period was divided into two five-year sub-periods 
and the analysis was applied to each sub-period separately.  

 3.1. January 1, 2001-January 1, 2006 Period 

 There are three statistically significant principal components for this period. The 
highest factor loadings for the thirteen stock markets in the three principal components are 
presented in Table 1. The stock markets with high factor loadings in the same principal 
component have similar contemporaneous movement patterns and they are highly 
correlated. Therefore, having these stock markets in the same investment portfolio would 
provide limited diversification benefits. To maximize the portfolio diversification benefit, 
investors should invest in the stock markets with high factor loadings in different principal 
components.   

 

 

 

 

 

 

 

 

 

 

        The first principal component is dominated by the Hong Kong, South Korean, Singapore, 
Shanghai, Taiwanese, Indian, Japanese, and Thai stock markets. This principal component has 
an eigenvalue of 4.563 and it explains 35.1 percent of the variation in the original data matrix. 
The New Zealand and Australian stock markets have their highest factor loadings in the 
second principal component. This principal component has an eigenvalue of 1.272 and it 

Table 1. Principal Components Analysis: January 1, 2001-January 1, 2006 Period        

Stock Markets Factor Loadings 

Principal Comp. #1 Principal Comp. #2 Principal Comp. #3 

 Hong Kong 0.783   

 South Korea 0.689   

 Singapore 0.666   

 Shanghai 0.647   

 Taiwan 0.638   

 India 0.535   

 Japan 0.532   

 Thailand 0.404   

 New Zealand  0.891  

 Australia  0.849  

 The Philippines   0.739 

 Malaysia   0.625 

 Indonesia   0.572 

 Eigenvalue 4.563 1.272 1.049 

 Variance Explained 35.1% 9.8% 8.1% 

 Cum. Variance Exp. 35.1% 44.9% 53.0 
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explains 9.8 percent of the variation in the original data matrix. The Philippine, Malaysian, 
and Indonesian stock markets have their highest factor loadings in the third principal 
component. This principal component has an eigenvalue of 1.049 and it explains 8.1 percent 
of the variation in the original data matrix. All three principal components together can 
explain 53.0 percent of the variance in the original data matrix.       

 3.2. January 1, 2006-January 1, 2011 period 

 The analysis is also applied to the January 1, 2006-January 1, 2011 period to determine 
if there are any significant changes in the contemporaneous co-movement patterns of Asian 
stock markets over time. This time period includes the 2008 global stock market crash and 
the post-crash recovery in 2009, when all global stock markets moved closely together. 
Therefore, one would expect that the number of statistically significant principal components 
would decrease and the benefits of global portfolio diversification would diminish during this 
period.   

 Indeed, there is only one statistically significant principal component for the January 1, 
2006-January 1, 2011 period. The factor loadings of the principal component are presented in 
Table 2. The principal component has an eigenvalue of 7.638 and it explains 58.8 percent of 
the variation in the original data matrix. 

 

 

 

 

 

 

 

 

 

 

 

        There are three statistically significant principal components in the January 1, 2001-
January 1, 2006 period versus only one statistically significant principal component in the 
January 1, 2006-January 1, 2011 period. This indicates that the co-movements of Asian stock 
markets became considerably closer and the portfolio diversification benefits of investing in 
Asian stock markets decreased significantly from the first five-year period to the second five-
year period.      

 

Table 2. Principal Components Analysis:  
January 1, 2006-January 1, 2011 Period 

Stock Markets Factor Loadings of the 
Principal Component 

 Singapore 0.891 

 Hong Kong 0.882 

 Australia 0.847 

 Shanghai 0.826 

 South Korea 0.806 

 Malaysia 0.768 

 Taiwan 0.765 

 Indonesia 0.753 

 The Philippines 0.699 

 New Zealand 0.693 

 India 0.678 

 Thailand 0.655 

 Japan  0.646 

 Eigenvalue 7.638 

 Var. Explained 58.8% 

 



I. Meric  -  J. H. Kim  -  L. Gong  -  G. Meric 

Business and Economics Research Journal 
3(1)2012 

5 

 4. Granger-Causality Tests 

 The Estima RATS Granger-Sims computer program was used in the Granger causality  
(G-C) tests. The optimal lag-length is three trading days in the VAR system used in the analysis 
(see: Sims, 1980).  The G-C test results for the joint hypotheses of zero coefficients on all 
three lags for each stock market are presented in Table 3. 

 4.1. General Observations 

 The stock markets with significant lead/lag linkages are not good portfolio 
diversification prospects. The findings show that Asian stock markets have significant lead/lag 
linkages. The F-value statistics in Table 3 indicate that most Asian stock markets have 
significant influence on the other Asian stock markets (i.e., the past returns of most Asian 
stock markets can predict the future returns of other Asian stock markets. 65 of the 156 F-
value statistics are statistically significant at the one-percent level. 18 test statistics are 
significant at the five-percent level.   

 The sum of the F-value statistics in each column of Table 3 shows the influence of each 
Asian stock market on the other Asian stock markets as an independent variable. The sum is 
the highest for the Singapore (146.5), Indian (113), and Japanese (98.6) stock markets. These 
stock markets appear to be the most influential stock markets in Asia. The sum is the lowest 
for the South Korean (17.3) and Philippine (17.4) stock markets. These stock markets appear 
to be the least influential stock markets in Asia. 

 All of the F-value statistics for the Indian stock market as an independent variable are 
statistically significant (i.e., the past returns of the Indian stock market leads -can predict- the 
stock returns of all the other Asian stock markets). Except the Thai stock market, the past 
returns of the Singapore stock market leads (can predict) the future stock returns of all the 

Table 3. Granger-Causality Test Statistics: January 1, 2001-January 1, 2011 

Dependent 

Variable 

Independent Variable - F Statistic 

AU HO IN ID JA MA NZ PH SH SI SK TA TH 

AU  0.3 11* 0.7 10* 10* 6* 1.8 1.2 20* 1.6 3** 3** 

HO 1.8  9* 1.7 18* 7* 14* 1.1 6* 24* 0.7 4* 0.6 

IN 4* 1.7  2.3 5* 2.3 8* 0.4 6* 3** 7* 1.5 2 

ID 1.4 1.8 12*  5* 8* 6* 0.9 4* 11* 1.4 1.1 3** 

JA 0.9 0.7 6* 0.2  3** 3** 1.5 0.4 13* 0.1 0.3 3** 

MA 1.4 2.2 19* 2.2 8*  3** 2.5 6* 10* 0.7 3** 0.9 

NZ 5* 0.7 3** 0.8 6* 3**  1.0 0.7 10* 1.2 1.2 4* 

PH 4* 1.1 10* 3** 8* 1.3 8*  0.1 14* 0.8 3** 4* 

SH 1.1 7* 10* 1.7 15* 5* 11* 1.2  16* 2.0 3** 0.9 

SI 2.3 0.2 6* 0.1 8* 5* 6* 1.4 3**  0.4 2.3 0.4 

SK 1.4 2.0 13* 2.4 11* 9* 5* 3** 0.7 17*  0.3 3** 

TA 0.7 0.4 9* 1.9 2.5 4* 5* 1.4 3** 8* 0.3  4* 

TH 6* 0.3 5* 5* 2.1 6* 9* 1.2 4* 0.5 1.1 0.9  

 
   AU – Australia HO – Hong Kong  IN – India   ID – Indonesia                 

JA – Japan   MA – Malaysia  NZ – New Zealand PH – Philippines 
SH – Shanghai SI – Singapore  SK – South Korea TA – Taiwan  

         TH – Thailand     

*   Significant at the one-percent level. 
       **  Significant at the five-percent level. 
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other Asian stock markets. Except the Thai and Taiwanese stock markets, the past returns of 
the Japanese stock market lead (can predict) the future stock returns of all the other Asian 
stock markets. The past returns of the South Korean stock market leads (can predict) the 
future stock returns of only the Indian stock market. The past returns of the Philippine stock 
market leads (can predict) the future stock returns of only the South Korean stock market. 

 The horizontal sum of the F-value statistics in Table 3 shows to what extent each Asian 
stock market is influenced by the other Asian stock markets as a dependent variable (i.e., to 
what extend the future returns of an Asian market can be predicted by the past returns of the 
other Asian stock markets). The sum is the highest for the Shanghai (73.9), Australian (68.6), 
and South Korean (67.8) stock markets (i.e., these stock markets are the most influenced 
Asian stock markets by the other Asian stock markets).  The sum is the lowest for the 
Japanese (32.1), Singapore (35.1), and New Zealand (36.6) stock markets (i.e., these stock 
markets are the least influenced Asian stock markets by the other Asian stock markets). 

 4.2. Australia 

 The returns of the Australian stock market lead the returns of the Indian, New Zealand, 
Philippine, and Thai stock markets (i.e., the past returns of the Australian stock market can 
predict the future returns of the Indian, New Zealand, Philippine, and Thai stock markets). 
The F statistics for these stock markets are all significant at the one-percent level. 

 The returns of the Australian stock market appear to follow the returns of the Indian, 
Japanese, Malaysian, New Zealand, Singapore, Taiwanese, and Thai stock markets (i.e., the 
past returns of the Indian, Japanese, Malaysian, New Zealand, Singapore, Taiwanese, and 
Thai stock markets can predict the future returns of the Australian stock market). The F 
statistics for the  Indian, Japanese, Malaysian, New Zealand, and Singapore stock markets are 
significant at the one-percent level. The F statistics for the Taiwanese and Thai stock markets 
are significant at the five-percent level.  

 4.3. Hong Kong 

 The returns of the Hong Kong stock market appear to lead only the returns of the 
Shanghai stock market (i.e., the past returns of the Hong Kong stock market can predict the 
future returns of only the Shanghai stock market). The F statistic is significant at the one-
percent level. 

 The returns of the Hong Kong stock market appear to follow the returns of the Indian, 
Japanese, Malaysian, New Zealand, Shanghai, Singapore, and Taiwanese stock markets (i.e., 
the past returns of the Indian, Japanese, Malaysian, New Zealand, Shanghai, Singapore, and 
Taiwanese stock markets can predict the future returns of the Hong Kong stock market). All F 
statistics are significant at the one-percent level. 

 4.4. India 

 The returns of the Indian stock market lead the returns of all the other Asian stock 
markets (i.e., the past returns of the Indian stock market can predict the future returns of all 
the other Asian stock markets). The test statistic for the New Zealand stock market is 
significant only at the five-percent level. The test statistics for all the other stock markets are 
significant at the one-percent level.   
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 The returns of the Indian stock market appear to follow the returns of the Australian, 
Japanese, New Zealand, Shanghai, Singapore, and South Korean stock markets (i.e., the past 
returns of the Australian, Japanese, New Zealand, Shanghai, Singapore, and South Korean 
stock markets can predict the future returns of the Indian stock market). The test statistics for 
the  Australian, Japanese, Shanghai, and South Korean stock markets are significant at the 
one-percent level. The F statistic for the Singapore stock market is significant only at the five-
percent level. 

 4.5. Indonesia 

 The returns of the Indonesian stock market appear to lead only the returns of the 
Philippine and Thai stock markets (i.e., the past returns of the Indonesian stock market can 
predict the future returns of the Philippine and Thai stock market). The test statistic for the 
Thai stock market is significant at the one-percent level. The test statistic for the Philippine 
stock market is significant at the five-percent level. 

 The returns of the Indonesian stock market appear to follow the returns of the Indian, 
Japanese, Malaysian, New Zealand, Shanghai, Singapore, and Thai stock markets (i.e., the 
past returns of the Indian, Japanese, Malaysian, New Zealand, Shanghai, Singapore, and Thai 
stock markets can predict the future returns of the Indonesian stock market). The F statistics 
for the Indian, Japanese, Malaysian, New Zealand, Shanghai, and Singapore stock markets are 
significant at the one-percent level. The F statistic for the Thai stock market is significant only 
at the five-percent level. 

 4.6. Japan 

 The returns of the Japanese stock market lead the returns of all the other Asian stock 
markets except the Taiwanese and Thai stock markets (i.e., the past returns of the Japanese 
stock market can predict the future returns of all the other Asian stock markets except the 
Taiwanese and Thai stock markets). The test statistics for the Australian, Hong Kong, India, 
Indonesian, Malaysian, New Zealand, Philippine, Shanghai, Singapore, and South Korean 
stock markets are all significant at the one-percent level.  

 The returns of the Japanese stock market appear to follow the returns of the Indian, 
Malaysian, New Zealand, Singapore, and Thai stock markets (i.e., the past returns of the 
Indian, Malaysian, New Zealand, Singapore, and Thai stock markets can predict the future 
returns of the Japanese stock market). The test statistics for the Indian and Singapore stock 
markets are significant at the one-percent level. The test statistics for the Malaysian, New 
Zealand, and Thai stock markets are significant at the five-percent level. 

 4.7. Malaysia 

 The returns of the Malaysian stock market lead the returns of all the other Asian stock 
markets except the Indian and Philippine stock markets (i.e., the past returns of the 
Malaysian stock market can predict the future returns of all the other Asian stock markets 
except the Indian and Philippine stock markets). The test statistics for the Australian, Hong 
Kong, Indonesian, Shanghai, Singapore, South Korean, Taiwanese, and Thai stock markets are 
significant at the one-percent level. The test statistics for the Japanese and New Zealand 
stock markets are significant at the five-percent level. 
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 The returns of the Malaysian stock market appear to follow the returns of the Indian, 
Japanese, New Zealand, Shanghai, Singapore, and Taiwanese stock markets (i.e., the past 
returns of the Indian, Japanese, New Zealand, Shanghai, Singapore, and Taiwanese stock 
markets can predict the future returns of the Malaysian stock market). The test statistics for 
the Indian, Japanese, Shanghai, and Singapore stock markets are significant at the one-
percent level. The test statistics for the New Zealand and Taiwanese stock markets are 
significant at the five-percent level. 

 4.8. New Zealand 

 The returns of the New Zealand stock market appear to lead the returns of all the other 
Asian stock markets (i.e., the past returns of the New Zealand stock market can predict the 
future returns of all the other Asian stock markets). The test statistics for the Australian, Hong 
Kong, Indian, Philippine, Shanghai, Singapore, South Korean, Taiwanese, and Thai stock 
markets are significant at the one-percent level. The test statistics for the Japanese and 
Malaysian stock markets are significant at the five-percent level.   

 The returns of the New Zealand stock market follow the returns of the Australian, 
Indian, Japanese, Malaysian, Singapore, and Thai stock markets (i.e., the past returns of the 
Australian, Indian, Japanese, Malaysian, Singapore, and Thai stock markets can predict the 
future returns of the New Zealand stock market). The test statistics for the  Australian, 
Japanese, Singapore, and Thai stock markets are significant at the one-percent level. The test 
statistics for the Indian and Malaysian stock markets are significant at the five-percent level.  

 4.9. The Philippines 

 The returns of the Philippine stock market appear to lead the returns of only the South 
Korean stock market (i.e., the past returns of the Philippine stock market can predict the 
future returns of only the South Korean stock market). The test statistic for the South Korean 
stock market is significant at the five-percent level.   

 The returns of the Philippine stock market follow the returns of the Australian, Indian, 
Indonesian, Japanese, New Zealand, Singapore, Taiwanese, and Thai stock markets (i.e., the 
past returns of the Australian, Indian, Indonesian, Japanese, New Zealand, Singapore, 
Taiwanese, and Thai stock markets can predict the future returns of the Philippine stock 
market). The test statistics for the Australian, Indian, Japanese, New Zealand, and Singapore 
stock markets are significant at the one-percent level. The test statistics for the Indonesian 
and Thai stock markets are significant at the five-percent level. 

 4.10. Shanghai 

 The returns of the Shanghai stock market lead the returns of the Hong Kong, Indian, 
Indonesian, Malaysian, Singapore, Taiwanese, and Thai stock markets (i.e., the past returns of 
the Shanghai stock market can predict the future returns of the Hong Kong, Indian, 
Indonesian, Malaysian, Singapore, Taiwanese, and Thai stock markets). The test statistics for 
the Hong Kong, Indian, Indonesian, Malaysian, Singapore, and Thai stock markets are 
significant at the one-percent level. The test statistic for the Taiwanese stock market is 
significant only at the five-percent level. 



I. Meric  -  J. H. Kim  -  L. Gong  -  G. Meric 

Business and Economics Research Journal 
3(1)2012 

9 

 The returns of the Shanghai stock market appear to follow the returns of the Indian, 
Japanese, Malaysian, New Zealand, Singapore, Taiwanese, and Thai stock markets (i.e., the 
past returns of the Indian, Japanese, Malaysian, New Zealand, Singapore, Taiwanese, and 
Thai stock markets can predict the future returns of the Shanghai stock market). The F 
statistics for the  Indian, Japanese, Malaysian, New Zealand, and Singapore stock markets are 
significant at the one-percent level. The F statistics for the Taiwanese and Thai stock markets 
are significant only at the five-percent level. 

 4.11. Singapore 

 The returns of the Singapore stock market lead the returns of all the other Asian stock 
markets except the Thai stock market (i.e., the past returns of the Malaysian stock market 
can predict the future returns of all the other Asian stock markets except the Thai stock 
market). The test statistics for the Australian, Hong Kong, Indonesian, Japanese, Malaysian, 
New Zealand, Philippine, Shanghai, South Korean, and Taiwanese stock markets are 
significant at the one-percent level. The test statistic for the Indian stock market is significant 
only at the five-percent level. 

 The returns of the Singapore stock market appear to follow the returns of the Indian, 
Japanese, Malaysian, New Zealand, and Shanghai stock markets (i.e., the past returns of the 
Indian, Japanese, Malaysian, New Zealand, and Shanghai stock markets can predict the future 
returns of the Singapore stock market). The test statistics for all of these stock markets are 
significant at the one-percent level. 

 4.12. South Korea 

 The returns of the South Korean stock market appear to lead the returns of only the 
Indian stock market (i.e., the past returns of the South Korean stock market can predict the 
future returns of only the Indian stock market). The test statistic is significant at the one-
percent level.   

 The returns of the South Korean stock market follow the returns of the Indian, 
Japanese, Malaysian, New Zealand, Philippine, Singapore, and Thai stock markets (i.e., the 
past returns of the Indian, Japanese, Malaysian, New Zealand, Philippine, Singapore, and Thai 
stock markets can predict the future returns of the South Korean stock market). The test 
statistics for the Indian, Japanese, Malaysian, New Zealand, and Singapore stock markets are 
significant at the one-percent level. The test statistics for the Philippine and Thai stock 
markets are significant at the five-percent level. 

 4.13. Taiwan 

 The returns of the Taiwanese stock market lead the returns of the Australian, Hong 
Kong, Malaysian, Philippine, and Shanghai stock markets (i.e., the past returns of the 
Taiwanese stock market can predict the future returns of the Australian, Hong Kong, 
Malaysian, Philippine, and Shanghai stock markets). The test statistic for the Hong Kong stock 
market is significant at the one-percent level. The test statistics for the other stock markets 
are significant at the five-percent level. 

        The returns of the Taiwanese stock market follow the returns of the Indian, Malaysian, 
New Zealand, Shanghai, Singapore, and Thai stock markets (i.e., the past returns of the 
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Indian, Malaysian, New Zealand, Shanghai, Singapore, and Thai stock markets can predict the 
future returns of the Taiwanese stock market). The test statistics for the  Indian, Malaysian, 
New Zealand, Singapore, and Thai stock markets are significant at the one-percent level. The 
test statistic for the Shanghai stock market is significant only at the five-percent level. 

 4.14. Thailand 

 The returns of the Thai stock market lead the returns of the Australian, Indonesian, 
Japanese, New Zealand, Philippine, South Korean, and Taiwanese stock markets (i.e., the past 
returns of the Thai stock market can predict the future returns of the Australian, Indonesian, 
Japanese, New Zealand, Philippine, South Korean, and Taiwanese stock markets). The test 
statistics for the New Zealand, Philippine, and Taiwanese stock markets are significant at the 
one-percent level. The test statistics for the Australian, Indonesian, Japanese and South 
Korean, stock markets are significant at the five-percent level. 

 The returns of the Thai stock market follow the returns of the Australian, Indonesian, 
Japanese, New Zealand, Philippine, South Korean, and Taiwanese stock markets (i.e., the past 
returns of the Australian, Indonesian, Japanese, New Zealand, Philippine, South Korean, and 
Taiwanese stock markets can predict the future returns of the Thai stock market). The test 
statistics for the New Zealand, Philippine, and Taiwanese stock markets are significant at the 
one-percent level. The test statistic for the Australian, Indonesian, Japanese, and South 
Korean, stock markets are significant at the five-percent level. 

 5. Summary and Conclusions 

 In this paper, we study the contemporaneous co-movements of and the time-series 
lead/lag linkages between thirteen major Asian stock markets with daily returns data for the 
January 1, 2001-January 1, 2011 period. Our principal components analysis (PCA) results 
indicate that the co-movements of Asian stock markets have become closer and portfolio 
diversification benefits have decreased during this period. Our Granger causality (G-C) test 
results indicate significant lead/lag linkages between Asian stock markets. We find that the 
Singapore, Indian, and Japanese stock markets are the most influential and the South Korean 
and Philippine stock markets appear are the least influential stock markets in Asia. The 
Singapore, Japanese, and New Zealand stock markets are the least affected and the Shanghai, 
Australian, and South Korean stock markets are the most affected stock markets by the 
movements of the other Asian stock markets.     

 

 References 

Enders, W. (1995). Applied Econometric Time Series. New York: Wiley.                                   

Freiwald, W. A., Valdes, P., Bosch, J., Biscay, R., Jimenez, J. C., Rodriguez, L. M., Rodriguez, V., 
Kreiter, A. K., & Singer, W. (1999). Testing non-linearity and directedness of 
interactions between neural groups in the Macaque inferotemporal cortex. J Neurosci 
Methods, 94, 105-119. 

Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time 
series. Journal of the American Statistical Association, 77, 304-313. 

Granger, C. W. J. (1969). Investigating causal relationships by econometric models and cross-
spectral methods. Econometrica, 37(3), 424-438. 



I. Meric  -  J. H. Kim  -  L. Gong  -  G. Meric 

Business and Economics Research Journal 
3(1)2012 

11 

Granger, C. W. J. (1988). Some recent developments in a concept of causality. Journal of 
Econometrics, 39(1/2), 199-211.    

Lau, S. T., & McInish, T. H. (1993). Co-movements of international equity returns: A 
comparison of the pre- and post-October 19, 1987, periods. Global Finance Journal, 4
(1), 1-19. 

Lee, S. B., & Kim, K. L. (1993). Does the October 1987 crash strengthen the co-movements 
among national stock markets? Review of Financial Economics, 3(1), 89-102. 

Makridakis, S. G., & Wheelwright, S. C. (1974). An analysis of the interrelationships among the 
major world equity exchanges. Journal of Business Finance and Accounting, 1(2), 195-
215. 

Marascuilo, L. A., & Levin, J. R. (1983). Multivariate Statistics in Social Sciences: A Researcher's 
Guide. Monterey, California: Brooks/Cole Publishing Company. 

Mardia, K., Kent, J., & Bibby, J. (1979). Multivariate Analysis. New York: Academy Press. 

Meric, G., Leal, R. P. C., Ratner, M., & Meric, I. (2001a). Co-movements of U.S. and Latin 
American equity markets before and after the 1987 crash. International Review of 
Financial Analysis, 10(3), 219-235. 

Meric, G., Leal, R. P. C., Ratner, M., & Meric, I. (2001b). Co-movements of U.S. and Latin 
American equity markets during the 1997-1998 emerging markets financial crisis. In I. 
Meric and G. Meric (eds.), Global Financial Markets at the Turn of the Century. London: 
Pergamon Press, Elsevier Science. 

 Meric, I., & Meric, G. (1989). Potential gains from international portfolio diversification and 
inter-temporal stability and seasonality in international stock market relationships. 
Journal of Banking and Finance, 13(4/5), 627-640. 

Meric, I., & Meric, G. (1996). Inter-temporal stability in the long-term co-movements of the 
world's stock markets. Journal of Multinational Financial Management, 6(3), 73-83. 

 Meric, I., & Meric, G. (1997). Co-movements of European equity markets before and after 
the crash of 1987. Multinational Finance Journal, 1(2), 137-152. 

Meric, I., & Meric, G. (2011). Sector and Global Investing: Risks, Returns, and Portfolio 
Diversification Benefits. Saarbrück, Germany: VDM (Verlag Dr. Müller) Publications.  

Meric, I., Wise, D., Coopersmith, L., & Meric, G. (2002). The linkages between the world's 
major equity markets in the 2000-2001 bear market. Journal of Investing, 11(4), 55-62. 

Philippatos, G. C., Christofi, A., & Christofi, P. (1983). The inter-temporal stability of 
international stock market relationships: Another view. Financial Management, 12(4), 
63-69. 

Ratner, M., & Leal, R. P. C. (1996). Causality tests for the emerging markets of Latin America. 
Journal of Emerging Markets, 1(1), 29-40. 

Roebroeck, A., Formisano, E., & Goebel, R. (2005). Mapping directed influence over the brain 
using Granger causality and fMRI. Neuroimage, 25, 230-42. 

Sato, J. R., Junior, E. A., Takahashi, D. Y., de Maria Felix, M., Brammer, M. J., & Morettin, P. A. 
(2006). A method to produce evolving functional connectivity maps during the course 
of an fMRI experiment using wavelet-based time-varying Granger causality. 
Neuroimage, 31, 187-96. 

Sims, C. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1-49. 

 



Co-movements of and Linkages between Asian Stock Markets  

Business and Economics Research Journal 
3(1)2012 

12 

Appendix A 

 Principal Components Analysis 

 Principal Components Analysis (PCA) is a procedure that converts a set of correlated 
variables into a set of uncorrelated variables, which is called principal components, of low 
dimension. In mathematical language, PCA uses an orthogonal linear transformation to 
transform the data to a new coordinate system such that the greatest variance by any 
projection of the data comes to lie on the first coordinate (called the first principal 
component), the second greatest variance on the second coordinate, and so on. 

 PCA is a form of eigenvector-based multivariate analysis that involves calculation of the 
eigenvalue  decomposition of a data covariance matrix or singular value decomposition of a 
data matrix. The approach helps to reveal the internal structure of the data in a way which 
best explains the variance in the data.  PCA can provide user with most informative 
information by reducing a high-dimensional data space to a lower dimensional principal 
components.  

 The principal component analysis can be described as follows: Let X = (x1, x2, …, xm)T be 
an m-dimensional random vector. Without loss of generality, assume that X has zero mean. 
Then, we can find a mxm dimensional orthogonal linear transformation matrix P, that is, PPT = 
PTP = Im, such that 

   Y = PX                                                                                                                      (A1) 

Y = (y1, y2, …, ym)T where s ≤ n, {yi} are independent random variables and random variables 
y1, y2, …, ym have decreasing variances. Since X is an m-dimensional random vector, the 
covariance of X, denoted as Cov(X), is a non-negative definite matrix.   

 Using matrix algebra, for any given non-negative definite matrix A, there exists an 
orthogonal transformation matrix P such that 

   PAPT = Diag( 1, 2, …, m)                                                                                              (A2) 

is a diagonal matrix, with diagonal elements 1 ≥ 2 ≥ …≥  s ≥ s+1=0…≥ m = 0. Mathematically, 
value i on the diagonal of matrix PAPT is the ith largest eigenvalue of the matrix A. Let  

   Y = PX = (y1, y2, …, ym)T                                                                                                      (A3) 

then, the mean of Y equals zero, random variables y1, y2, …, ym of Y are independent of each 
other and with variance is decreasing order, since 

   Cov(Y) = E(YYT) = E[(PX)(PX)T] = P Cov(X) PT = Diag( 1, 2, …, m)                        (A4) 

 More generally, denote that ps
T be the vector of the ith row of matrix P. Let k be an 

integer between 0 < k ≤ m, and Q = (p1
T

, p2
T

,…, pk
T)T be the sxm dimensional matrix that 

consists of the upper s rows from matrix P.  We define random vector 

        W = QX = (y1, y2, …, yk)
T                                                                                                    (A5) 

 Then, W is a k–dimensional random vector consistent of with independent random 
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variable y1, y2, …, yk and  

   Cov(W) = E(WWT) = E[(QX)(QX)T] = Q Cov(X) QT = Diag(1, 2, …, k)                  (A6) 

 Finding the Principal Components based on statistical sampling in a real application: 
Suppose a set of n observations, x1, x2,…, xn, is collected for the m-dimensional random 
variable X, with each xi = (xi1, xi2, …, xim)T representing a single grouped observation of the m 
random variables of X.  Without loss of generality, we assume that empirical mean of the n 
observations {x1, x2,…, xn} equals 0. That is,  xi= 0. Otherwise, we can always let μ = xi be a 
vector of algebraic mean of {xi}, and let (xi – μ), i = 1, 2, …, n. 

 If you want to reduce the data to obtain the first k principal components based on the 
observed data set, so that it can be described with only k variables, k < m,  write x1, x2,…, xn 
are n observations of column random vectors X.   

 The statistical value of covariance of the n observation of random vector X can be 
calculated as  

         V = (xi)(xi)
T = XXT                                                                                                    (A7) 

where  X = (x1, x2,…, xn) as a m×n matrix. Following above discussion (5) and (6), we are able 
to calculate the k principal components by letting 

         W = QVQT                                                                                                                           (A8) 

 One of the straightforward ways to determine the number of principal components k is 
as follows: For a selected value 0< α < 1, let 

   k =  min{ j |  ≥ α},                                                                                                      (A9) 

   where Λ(j) = i 

For example, for given α = 0.8, then the number of principal components selected will 
capture at least 80% of the value of original variable. 

 The Kaiser’s Rule suggests that a principal component be selected unless it extracts at 
least as much as the equivalent of average value from the original variable. Specifically, let  

    = i/,   where  = , and                                                                                           (A10) 

The Kaiser Criterion is to select k such that 

  k = max{ i | ≥ 1}.                                                                                                           (A11) 

 Note that{i} are the diagonal elements of covariance matrix Cov(Y) and let {σ} be the 
diagonal elements of Covariance matrix Cov(X), or, equivalently, variances of original random 
variable {xi}. Based on property from linear algebra, we have i = σ   Note also that  = m = the 
total number of the random variables, Kaiser’s Rule indicates that a principal component will 
be selected unless it extracts at least as much as the equivalent of average value of the 
original variable.  
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Appendix B 

 Granger Causality 

 Granger causality is a statistical concept of causality that helps to determine whether 
or not a time series can be used to provide better prediction of another time series. It was 
first proposed by and named after Clive W.J. Granger (Granger, 1969), a Nobel Prize winner in 
Economics.   

 Simply stated, a factor/cause X is called a Granger-cause of another factor/cause Y, if X 
can be considered, as least partially, a leading indicator of Y. That is, the past value of X 
contains additional information of predicting Y than past values of Y and/or other known 
existing leading indicators. 

 The original Granger causality is defined in the context of a linear regression. Let {Yt} 
and {Xt} be two time series. Assume that yt can be predicted by the following autoregressive 
model: 

        yt = a0 + aiyt−i + et                                                                                                    (B1) 

where et and e are residuals for the time series, and p ≥ 1 is the maximum number of lagged 
dependent variable that is significant in the model.   

        A time series {Xi} Granger-causes{Yi} if it is a significant independent variable in the 
augmented autoregressive model of predicting y: 

        yt = a + a yt−i + cxt−j + e                                                                                     (B2) 

where at least one of the c corresponding to the lagged values of series x is significantly 
different from zero.   

        An F test can be applied to testing the significance of Granger causality of x using the 
following hypothesis testing model: 

        Ho: c1= c2=…= cs = 0 

        Ha: Not all ci are equal to zero 

        Since the original concept of Granger causality developed in 1969, most research has 
been done in both model extension and applications. One of the direct extension is to define 
Granger causality in more general form by extending regression form (B1) and (B2) to the 
following more general multi-dimension forms: 

        Yt = A0 + AiYt−i + BiWt−i  + Et               (B3) 

        Yt = A + AYt−i + BWt−i +  CXt−j + E                                                             (B4) 

        Where {Yt}, {Wi}, and {Xt}, for t = 1, 2, 3, …, are multi-dimensional time series, Ai, Bi and A, 
B, C are matrices, and, Et and E are residuals for each time series.  Whether Xt is G-cause to Yt 
can be tested by an F-test for the null hypothesis that C = 0.  
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 In addition to the above extension of Granger casuality concept, many researchers, 
such as Freiwald et al. (1999), have extended the G-causality model to non-linear 
environment. However, due to difficulty and complexity in implementation, the application of 
non-linear G-causality models is limited. Various methods have been developed to examine G
-causality, with techniques extended beyond initial regression analysis to areas such as 
information theory and dynamic system theory.  For example, spectral G-causality (Geweke, 
1982) is proposed to use Fourier methods to examine G-causality in the spectral domain.  

 G-causality is widely used in finance.  For example, in the studies by Ratner and Leal 
(1996) and Meric et al. (2000),  if a national equity market’s index returns Granger-cause the 
equity markets index returns of another country (i.e., if the equity market index returns of a 
country can be used to predict the equity index returns of another country) is studied.  

 There are also growing application of G-causality in neuroscience, where it is used to 
identify causal interactions in neural data.  Examples of application in this area can be found 
in Roebroeck et al. (2005) and Sato et al. (2006). 
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